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Abstract

Visual Question Answering (VQA) is a well-
known and challenging task that requires sys-
tems to jointly reason about natural language
and vision. Deep learning models in vari-
ous forms have been the standard for solving
VQA. However, some of these VQA models
are better at certain types of image-question
pairs than other models. Ensembling VQA
models intelligently to leverage their diverse
expertise is, therefore, advantageous.

Stacking With Auxiliary Features (SWAF)
is an intelligent ensembling technique which
learns to combine the results of multiple mod-
els using features of the current problem as
context. We propose four categories of aux-
iliary features for ensembling for VQA. Three
out of the four categories of features can be
inferred from an image-question pair and do
not require querying the component models.
The fourth category of auxiliary features uses
model-specific explanations. In this paper, we
describe how we use these various categories
of auxiliary features to improve performance
for VQA. Using SWAF to effectively ensem-
ble three recent systems, we obtain a new
state-of-the-art. Our work also highlights the
advantages of explainable AI models.

1 Introduction

Visual Question Answering (VQA), the task of ad-
dressing open-ended questions about images (Ma-
linowski and Fritz, 2014; Antol et al., 2015), has
attracted significant attention in recent years (An-
dreas et al., 2016a; Goyal et al., 2016; Agrawal
et al., 2016; Teney et al., 2017). Given an im-
age and a natural language question about the im-
age, the task is to provide an accurate natural lan-
guage answer. VQA requires visual and linguis-
tic comprehension, language grounding as well as
common-sense knowledge. A variety of methods
to address these challenges have been developed

in recent years (Fukui et al., 2016; Xu and Saenko,
2016; Lu et al., 2016; Chen et al., 2015). The vi-
sion component of a typical VQA system extracts
visual features using a deep convolutional neural
network (CNN), and the linguistic component en-
codes the question into a semantic vector using
a recurrent neural network (RNN). An answer is
then generated conditioned on the visual features
and the question vector.

Most VQA systems have a single underlying
method that optimizes a specific loss function and
do not leverage the advantage of using multiple di-
verse models. One recent ensembling approach to
VQA (Fukui et al., 2016) combined multiple mod-
els that use multimodal compact bilinear pool-
ing with attention and achieved state-of-the-art ac-
curacy on the VQA 2016 challenge. However,
their ensemble uses simple softmax averaging to
combine outputs from multiple systems. Also,
their model is pre-trained on the Visual Genome
dataset (Krishna et al., 2017) and they concate-
nate learned word embeddings with pre-trained
GloVe vectors (Pennington et al., 2014). Several
other deep and non-deep learning approaches for
solving VQA have also been proposed (Lu et al.,
2016; Zhou et al., 2015; Noh et al., 2016). Al-
though these models perform fairly well on certain
image-question (IQ) pairs, they fail spectacularly
on certain other IQ pairs. This led us to conclude
that the various VQA models have learned to per-
form well on specific types of questions and im-
ages. Therefore, there is an opportunity to com-
bine these models intelligently so as to leverage
their diverse strengths.

Ensembling multiple systems is a well known
standard approach to improving accuracy in ma-
chine learning (Dietterich, 2000). Stacking with
Auxiliary Features (SWAF) (Rajani and Mooney,
2017) is a recent ensembling algorithm that learns
to combine outputs of multiple systems using fea-



Figure 1: Random sample of images with questions and
ground truth answers taken from the VQA dataset.

tures of the current problem as context. In this
paper, we use SWAF to more effectively com-
bine several VQA models. Traditional stacking
(Wolpert, 1992) trains a supervised meta-classifier
to appropriately combine multiple system outputs.
SWAF further enables the stacker to exploit addi-
tional relevant knowledge of both the component
systems and the problem by providing auxiliary
features to the meta-classifier. Our approach ex-
tracts features from the IQ pair under considera-
tion, as well as the component models and pro-
vides this information to the classifier. The meta-
classifier then learns to predict whether a specific
generated answer is correct or not.

Explanations attempt to justify a system’s pre-
dicted output and provide context for their de-
cision that may also help SWAF. We extract vi-
sual explanations from various deep learning mod-
els and use those as auxiliary features for SWAF.
Our contributions can be summarized as follows:
(a) developing novel auxiliary features that can
be inferred from VQA questions and images; (b)
extracting visual explanations from several com-
ponent models for each IQ pair and using those
to also generate auxiliary features; and (c) us-
ing SWAF to ensemble various VQA models and
evaluating ablations of features while comparing
our approach extensively to several individual as
well as ensemble systems. By effectively ensem-
bling three leading VQA systems with SWAF, we
demonstrate state-of-the-art performance.

2 Background and Related Work

VQA is the task of answering a natural language
question about the content of an image by re-
turning an appropriate word or phrase. Figure 1
shows a sample of images and questions from the

VQA 2016 challenge. The dataset consists of im-
ages taken from the MS COCO dataset (Lin et al.,
2014) with three questions and answers per image
obtained through Mechanical Turk (Antol et al.,
2015). Table 1 summarizes the splits in the VQA
dataset. Several deep learning models have been
developed that combine a computer vision compo-
nent with a linguistic component in order to solve
the VQA challenge. Some of these models also
use data-augmentation for pre-training. We dis-
cuss the VQA models we use in Section 5.

Images Questions

Training 82,783 248,349
Validation 40,504 121,512

Test 81,434 244,302

Table 1: VQA dataset splits.

Stacking With Auxiliary Features (SWAF) is an
ensembling technique that combines outputs from
multiple systems using their confidence scores
and task-relevant features. It has previously
been applied effectively to information extraction
(Viswanathan et al., 2015), entity linking (Rajani
and Mooney, 2016) and ImageNet object detection
(Rajani and Mooney, 2017). To the best of our
knowledge, there has been no prior work on stack-
ing for VQA, and we are the first to show how
model-specific explanations can serve as an aux-
iliary feature. The auxiliary features that we use
are motivated by an analysis of the VQA dataset
and also inspired by related work, such as using a
Bayesian framework to predict the form of the an-
swer from the question (Kafle and Kanan, 2016).

Deep learning models have been used widely on
several vision and language problems. However,
they frequently lack transparency and are unable
to explain their decisions (Selvaraju et al., 2017).
On the other hand, humans can justify their deci-
sions with natural language as well as point to the
visual evidence that supports their decision. There
are several advantages of having AI systems that
can generate explanations that support their pre-
dictions (Johns et al., 2015; Agrawal et al., 2016).
These advantages have motivated recent work on
explainable AI systems, particularly in computer
vision (Antol et al., 2015; Goyal et al., 2016; Hen-
dricks et al., 2016; Park et al., 2016). However,
there has been no prior work on using explana-
tions for ensembling multiple models or improv-
ing performance on a challenging task. In this



Figure 2: Ensemble Architecture using Stacking with
Auxiliary Features. Given an input, the ensemble
judges every possible question-answer pair produced
by the component systems and determines the final out-
put answer.

paper, we generate visual explanations for three
different VQA models and use these explanations
to develop auxiliary features that aid in effectively
ensembling VQA systems.

3 Stacking With Auxiliary Features
(SWAF) for VQA

In stacking, a meta-classifier is learned to com-
bine the outputs of multiple underlying systems
(Wolpert, 1992). The stacker learns a classifica-
tion boundary based on the confidence scores pro-
vided by individual systems for each possible out-
put. However, many times the scores produced
by systems are not probabilities or not well cali-
brated and cannot be meaningfully compared. In
such circumstances, it is beneficial to also have
other reliable auxiliary features, as in the SWAF
approach. SWAF provides the meta-classifier ad-
ditional information, such as features of the cur-
rent problem and provenance or explanation infor-
mation about the output from individual systems.
This allows SWAF to learn which systems do well
on which types of problems and when to trust
agreements between specific systems. The learned
meta-classifier makes a binary decision whether or
not to accept a particular output. Figure 2 gives an
overview of the SWAF approach.

For stacking VQA systems, we first form
unique question-answer pairs across all of the sys-
tems’ outputs before passing them through the
stacker. If a system generates a given output, then
we use its probability estimate for that output, oth-

erwise, the confidence is considered zero. If a
question-answer pair is classified as correct by the
stacker, and if there are other answers that are also
classified as correct for the same question, the out-
put with the highest meta-classifier confidence is
chosen. For questions that do not have any answer
classified as correct by the stacker, we choose the
answer with lowest classifier confidence, which
means it is least likely to be incorrect. The reason
we do this is that the online VQA scorer expects
an answer for each question in the test set and pe-
nalizes the model for every unanswered question.

The confidence scores along with other aux-
iliary features form the complete set of features
used by the stacker. The auxiliary features are
the backbone of the SWAF approach, enabling the
stacker to intelligently learn to rely on systems’
outputs conditioned on the supporting evidence.
We use a total of four different categories of auxil-
iary features for VQA. Three of these types can be
inferred directly from the image-question (IQ) pair
and do not require querying the individual mod-
els. For the fourth category of auxiliary features,
we generate visual explanations for the compo-
nent models and use these to create the explana-
tion auxiliary features. The first three categories
of features are discussed below and the fourth cat-
egory is discussed in the next section.

3.1 Question and Answer Types

Antol et al. (2015) analyzed the VQA data and
found that most questions fall into several types
based on the first few words (e.g. questions begin-
ning with “What is...”, “Is there...”, “How many...”,
or “Does the...”). Using the validation data, we
discover such lexical patterns to define a set of
question types. The questions were tokenized and
a question type was formed by adding one token
at a time, up to a maximum of five, to the current
substring. The question “What is the color of the
vase?” has the following types: “What”, “What
is”, “What is the”, “What is the color”, “What is
the color of”. The prefixes that contain at least 500
questions were then retained as types. We added
a final type “other” for questions that do not fall
into any of the predefined types, resulting in a to-
tal of 70 question types. A 70-bit vector is used
to encode the question type as a set of auxiliary
features.

The original analysis of VQA answers found
that they are 38% “yes/no” type and 12% numbers.



There is clearly a pattern in the VQA answers
as well and we use the questions to infer some
of these patterns. We considered three answer
types – “yes/no”, “number”, and “other”. The
answer-type auxiliary features are encoded using
a one-hot vector. We classify all questions be-
ginning with “Does”,“Is”,“Was”,“Are”, and “Has”
as “yes/no”. Ones beginning with “How many”,
“What time”, “What number” are assigned “num-
ber” type. These inferred answer types are not ex-
haustive but have good coverage. The intuition be-
hind using the question and answer types as aux-
iliary features is that some VQA models are better
than others at handling certain types of questions
and/or answers. Making this information available
at the time of classification aids the stacker in mak-
ing a better decision.

3.2 Question Features

We also use a bag-of-words (BOW) representa-
tion of the question as auxiliary features. Words
that occur at least five times in the validation set
were included. The final sparse vector represent-
ing a question was normalized by the number of
unique words in the question. In this way, we are
able to embed the question into a single vector.
Goyal et al. (2016) showed that attending to spe-
cific words in the question is important in VQA.
Including a BOW for the question as auxiliary fea-
tures equip the stacker to efficiently learn which
words are important and can aid in classifying an-
swers.

3.3 Image Features

We also used “deep visual features” of the image
as additional auxiliary features. Specifically, we
use the 4, 096 features from VGGNet’s (Simonyan
and Zisserman, 2015) fc7 layer . This creates an
embedding of the image in a single vector which
is then used by the stacker. Using such image fea-
tures enables the stacker to learn to rely on systems
that are good at identifying answers for particular
types of images. Recall that the individual VQA
models fuse an embedding of the image along with
an embedding of the question. By using the ques-
tion and image embeddings at the meta-classifier
level, the stacker learns to discriminate between
the component models based on a deeper repre-
sentation of the IQ pair.

4 Using Explanations

Recently, there has been work on analyzing re-
gions of an image that deep-learning models fo-
cus on when making decisions (Goyal et al., 2016;
Hendricks et al., 2016; Park et al., 2016). This
work shows that deep-learning models attend to
relevant parts of the image when making a deci-
sion. For VQA, the parts of images that the mod-
els focus on can be thought of as visual explana-
tions for answering the question. We use these
visual explanations to construct auxiliary features
for SWAF. The idea behind using explanation fea-
tures is that they enable the stacker to learn to trust
the agreement between systems when they also
agree on the heat-map explanation by “looking”
at the right region of the image when generating
an answer.

4.1 Generating Explanations
We use the GradCAM algorithm (Selvaraju et al.,
2017) to generate model-specific explanatory
heat-maps for each IQ pair. This approach gen-
erates a class-discriminative localization-map for
a given model based on its respective predicted
output class in the following way. First, the gra-
dient of the score yc for the predicted class c
is computed before the softmax layer with re-
spect to the feature maps Ak of a convolutional
layer. Then, the gradients flowing back are global
average pooled to obtain the neuron importance
weights.

wc
k =

global average pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

∂yc

∂Ak
ij︸ ︷︷ ︸

backprop gradients

The above weights capture the importance of a
convolutional feature map k for the output class
c, where Z is the total number of pixels in the
feature map. A ReLU over the weighted combi-
nation of the feature maps results in the required
localization-map for the output class as follows:

Hc = ReLU(
∑
k

wc
kA

k)

For each of the component VQA models, we gen-
erate the localization-map to be used as auxiliary
features for ensembling. Figure 3 shows a sample
of IQ pairs from the VQA dataset and their respec-
tive heat-maps generated for three VQA models.



Figure 3: Each row from left to right shows an image-question pair from the VQA dataset along with localization-
maps overlaid on the image generated by the LSTM, HieCoAtt and MCB models respectively. The answers shown
are those predicted by our ensemble.

4.2 Explanation as Auxiliary Features

The localization-map generated by each VQA
model serves as a visual explanation for the pre-
dicted output of that model. We compare agree-
ment between the localization-maps of the indi-
vidual models to generate auxiliary features for
SWAF. We take the absolute gray-scale value
of the localization-maps in of each model and
compute their mean rank-correlation with the
localization-map of every other model. We rank
the pixels according to their spatial attention
and then compute the correlation between the
two ranked lists. The rank correlation protocol
has been used in the past to compare machine-
generated and human attention-maps as described
by Das et al. (2016). We also experimented with
using the Earth Mover’s Distance (EMD) in place

of the rank-order correlation metric, as discussed
in Section 6. We compare the localization-maps
of each pair of VQA models, generating

(
n
2

)
“ex-

planation agreement” auxiliary features for SWAF,
where n is the total number of models.

5 Component VQA Systems

We use SWAF to combine three diverse VQA sys-
tems such that the final ensemble performs bet-
ter than any individual component model even on
questions with a low agreement. The three compo-
nent models are trained on the VQA training set.
Each of the three models is described below.

5.1 Long Short-Term Memory (LSTM)

The LSTM model (Antol et al., 2015) is one of
the original baseline models used to establish a



benchmark for the VQA dataset. A VGGNet
(Simonyan and Zisserman, 2015) is used to ob-
tain embeddings for the image which is com-
bined with an LSTM (Hochreiter and Schmidhu-
ber, 1997) embedding of each question. An LSTM
with two hidden layers is used to obtain a 2, 048-
dimensional embedding of the question, followed
by a fully-connected layer with tanh non-linearity
to transform the embedding to 1, 024 dimensions.
The l2 normalized activations from the last hid-
den layer of VGGNet are used as a 4, 096 dimen-
sional image embedding. The image embedding is
first transformed to 1, 024 dimensions by a fully-
connected layer with tanh nonlinearity to match
the dimensionality of the LSTM embedding of the
question. The transformed image and LSTM em-
beddings are then fused via element-wise multipli-
cation.

5.2 Hierarchical Question-Image
Co-Attention (HieCoAtt)

The idea behind the HieCoAtt model is that in
addition to using visual attention to focus on
where to look, it is equally important to model
what words to attend to in the question (question-
attention) (Lu et al., 2016). This model jointly
reasons about the visual and language compo-
nents using “co-attention”. Question attention is
modeled using a hierarchical architecture at word,
phrase, and question levels.

HieCoAtt uses two types of co-attention – par-
allel and alternating. Parallel co-attention attends
to the image and question simultaneously by cal-
culating the similarity between image and ques-
tion features at all pairs of image-locations and
question-locations. Alternating co-attention se-
quentially alternates between generating image
and question attention by attending to the image
based on the question summary vector and then
attending to the question based on the attended im-
age features.

5.3 Multimodal Compact Bilinear pooling
(MCB)

The MCB model combines the vision and lan-
guage vector representations using an outer prod-
uct instead of the traditional approach of using
concatenation or element-wise product or sum of
the two vectors (Fukui et al., 2016). Bilinear pool-
ing computes the outer product between two vec-
tors which, in contrast to the element-wise prod-
uct, allows a multiplicative interaction between

all elements of both vectors. To overcome the
challenge of high dimensionality due to the outer
product, the authors adopt the idea of using Mul-
timodal Compact Bilinear pooling (MCB) (Gao
et al., 2016) to efficiently and expressively com-
bine multimodal features.

The MCB model extracts representations for
the image using the 152-layer Residual Network
(He et al., 2016) and an LSTM (Hochreiter and
Schmidhuber, 1997) embedding of the question.
The two vector are pooled using MCB and the
answer is obtained by treating the problem as a
multi-class classification problem with 3, 000 pos-
sible classes. The best MCB model is an en-
semble of seven attention models and uses data-
augmentation for pre-training along with pre-
trained GloVe word embeddings. The best MCB
model won the VQA 2016 challenge by obtaining
the best performance on the test set.

6 Experimental Results and Discussion

We present experimental results on the VQA chal-
lenge using the SWAF approach and compare it to
various baselines, individual and ensemble VQA
models, as well as ablations of our SWAF algo-
rithm on the standard VQA test set. In addition
to the three data splits given in Table 1, the VQA
challenge divides the test set into test-dev and
test-standard. Evaluation on either split requires
submitting the output to the competition’s online
server.1 However, there are fewer restrictions on
the number of submissions that can be made to
the test-dev compared to the test-standard. The
test-dev is a subset of the standard test set con-
sisting of randomly selected 60, 864 (25%) ques-
tions. We use the test-dev set to tune the parame-
ters of the meta-classifier. All the individual VQA
models that we ensemble are trained only on the
VQA training set and the SWAF meta-classifier is
trained on the VQA validation set.

For the meta-classifier, we use a L1-regularized
SVM classifier for generic stacking and stacking
with only question/answer types as auxiliary fea-
tures. For the question, image, and explanation
features, we found that a neural network with two
hidden layers works best. The first hidden layer is
fully connected and the second has approximately
half the number of neurons as the first layer. The
question and image features are high-dimensional
and therefore a neural network classifier worked

1www.visualqa.org/challenge.html

www.visualqa.org/challenge.html


Method All Yes/No Number Other

DPPNet (Noh et al., 2016) 57.36 80.28 36.92 42.24

iBOWIMG (Zhou et al., 2015) 55.72 76.55 35.03 42.62
NMNs (Andreas et al., 2016b) 58.70 81.20 37.70 44.00
LSTM (Antol et al., 2015) 58.20 80.60 36.50 43.70
HieCoAtt (Lu et al., 2016) 61.80 79.70 38.70 51.70
MCB (Single system) (Fukui et al., 2016) 62.56 80.68 35.59 52.93

MCB (Ensemble) (Fukui et al., 2016) 66.50 83.20 39.50 58.00

Voting (MCB + HieCoAtt + LSTM) 60.31 80.22 34.92 48.83
Stacking 63.12 81.61 36.07 53.77

+ Q/A type features 65.25 82.01 36.50 57.15
+ Question features 65.50 82.26 38.21 57.35

+ Image features 65.54 82.28 38.63 57.32
+ Explanation features 67.26 82.62 39.50 58.34

Table 2: Accuracy results on the VQA test-standard set. The first block shows performance of a VQA model that
use external data for pre-training, the second block shows single system VQA models, the third block shows an
ensemble VQA model that also uses external data for pre-training, and the fourth block shows ensemble VQA
models.

well. We found that using late fusion (Karpa-
thy et al., 2014) to combine the auxiliary features
for the neural network classifier worked slightly
better. We used Keras with Tensorflow back-end
(Chollet, 2015) for implementing the network. We
compare our approach to a voting baseline that re-
turns the answer with maximum agreement, with
ties broken in the favor of systems with higher
confidence scores. We also compare against other
state-of-the-art VQA systems not used in our en-
semble: iBowIMG (Zhou et al., 2015), DPPNet
(Noh et al., 2016) and the Neural Module Net-
works (NMNs) (Andreas et al., 2016b).

The iBowIMG concatenates the image features
with the bag-of-word question embedding and
feeds them into a softmax classifier to predict the
answer, resulting in performance comparable to
other models that use deep or recursive neural
networks. The iBowIMG beats most VQA mod-
els considered in their paper. The DPPNet, on
the other hand, learns a CNN with some param-
eters predicted from a separate parameter predic-
tion network. Their parameter prediction network
uses a Gated Recurrent Unit (GRU) to generate
a question representation and maps the predicted
weights to a CNN via hashing. The DPPNet uses
external data (data-augmentation) in addition to
the VQA dataset to pre-train the GRU. Another
well-known VQA model is the Neural Module
Network (NMN) that generates a neural network

on the fly for each individual image and ques-
tion. This is done through choosing from various
sub-modules based on the question and compos-
ing these to generate the neural network, e.g., the
find[x] module outputs an attention map for
detecting x. To arrange the modules, the question
is first parsed into a symbolic expression and us-
ing these expressions, modules are composed into
a sequence to answer the query. The whole system
is trained end-to-end through backpropagation.

The VQA evaluation server, along with report-
ing accuracies on the full question set, also re-
ports a break-down of accuracy across three an-
swer categories. The image-question (IQ) pairs
that have answer type as “yes/no”, those that have
“number” as their answer type and finally those
that do not belong to either of the first two cat-
egories are classified as “other”. Table 2 shows
the full and category-wise accuracies. All scores
for the stacking models were obtained using the
VQA test-standard server. The table shows results
for both single system and ensemble MCB mod-
els. We used the single system MCB model as a
component in our ensemble. The ensemble MCB
system, however, was the top-ranked system in the
VQA 2016 challenge and it is pre-trained on the
Visual Genome dataset (Krishna et al., 2017) as
well as uses pre-trained GloVe vectors (Penning-
ton et al., 2014). On the other hand, our ensemble
system does not use any external data and consists



Figure 4: Results for auxiliary feature ablations on the
VQA test-dev set. The x-axis indicates the feature
set that was ablated from the final ensemble.

of only three component models.
The SWAF approach obtains a new state-of-the-

art result on the VQA task. The vanilla stack-
ing approach itself beats the best individual model
and adding the auxiliary features further boosts
the performance. Our SWAF model that uses all
three sets of auxiliary features related to IQ pairs
does particularly well on the more difficult “other”
answer category, indicating that the auxiliary fea-
tures provide crucial information at classification
time. To further analyze the SWAF results, we
performed experiments with ablations of the aux-
iliary features. Figure 4 shows the results on the
test-dev set obtained when ablating each of the
auxiliary feature sets. We observe that deleting
the Q/A type decreased performance the most and
deleting the explanation features decreased perfor-
mance the least. This indicates that the Q/A type
features are the most informative and the explana-
tion features are the least informative for deciding
the correct answer.

The voting baseline does not perform very well
even though it is able to beat one of the component
models. The SWAF ablation results clearly indi-
cate that there is an advantage to using each type of
auxiliary feature. Each of the auxiliary feature sets
contributes to the final ensemble’s performance,
which is clear from Table 2. The voting and the
“vanilla stacking” ensembles do not perform as
well as SWAF. This leads us to conclude that the
performance gain is actually obtained from using
the auxiliary features.

In particular, using explanations generated by
various deep learning models as auxiliary fea-
tures improved performance. We observed that
the localization-maps generated were fairly noisy,
as is evident from Figure 3. Although the indi-

vidual component systems agreed on an answer
for many of the IQ pairs, the regions of the im-
age they attend to varied significantly. However,
the rank correlation metric in the auxiliary fea-
tures made the localization-maps useful for en-
sembling. This is because, when training on the
validation set, the stacker learns how to weight
the auxiliary features, including those obtained us-
ing localization-maps. In this way, it learns to
trust only the localization-maps that are actually
useful. We also observed that there was a high
positive correlation between the localization-maps
generated by the HieCoAtt and MCB models, fol-
lowed by the LSTM and MCB models, and then
the LSTM and HieCoAtt models with several of
the maps even negatively correlated between the
last two models.

We also experimented with using Earth Mover’s
Distance (EMD) to compare heat-maps and found
that it worked even better than rank-order corre-
lation; however, it came at a cost of high com-
putational complexity (O(n3) vs. O(n)). Fig-
ure 4 shows the difference in performance ob-
tained when explanation features calculated using
either EMD or rank-order correlation are ablated
from the final ensemble. Clearly, using EMD to
compare explanation maps has more impact on the
system’s accuracy. Consistent with previous find-
ings (Bylinskii et al., 2018), our results confirm
that EMD provides a finer-grained comparison be-
tween localization maps. Overall, our work shows
that the utility of explanations is not limited to just
developing human trust and making models more
transparent. Explanations can also be used to im-
prove performance on a challenging task.

7 Conclusions and Future Work

We have presented results for using stacking with
auxiliary features (SWAF) to ensemble VQA sys-
tems. We proposed four different categories of
auxiliary features, three of which can be inferred
from an image-question pair. We showed that our
model trained on these auxiliary features outper-
forms the individual component systems as well
as other baselines to obtain a new state-of-the-art
for VQA. For the fourth category of features, we
have proposed and evaluated the novel idea of us-
ing explanations to improve ensembling of mul-
tiple systems. We demonstrated how visual ex-
planations for VQA (represented as localization-
maps) can be used to aid stacking with auxiliary



features. This approach effectively utilizes infor-
mation on the degree to which systems agree on
the explanation of their answers. We showed that
the combination of all of these categories of auxil-
iary features, including explanation, gives the best
results.

We believe that integrating explanation with en-
sembling has a two-fold advantage. First, as dis-
cussed in this paper, explanations can be used to
improve the accuracy of an ensemble. Second, ex-
planations from the component systems could be
used to build an explanation for the overall en-
semble. That is, by combining multiple compo-
nent explanations, SWAF could also produce more
comprehensible results. Therefore, in the future,
we would like to focus on explaining the results of
an ensemble. Another issue we plan to explore is
using textual explanations (Park et al., 2016) for
VQA. We believe that the words in the question
to which a system attends can also be used to im-
prove ensembling. Finally, we hope to apply our
approach to additional problems beyond VQA.
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